Uniqueness of some cyclic projective planes
نویسندگان
چکیده
For n < 41 and for n ∈ {121, 125, 128, 169, 256, 1024}, every cyclic projective plane of order n is desarguesian. In particular, the cyclic group of order 1, 049, 601 contains a unique nontrivial difference set, up to equivalence.
منابع مشابه
Cyclic Quotients of Fake Projective Planes
Recently, Prasad and Yeung classified all possible fundamental groups of fake projective planes. According to their result, many fake projective planes admit an automorphism of prime order, and in that case the order must be 3 or 7. Let σ be an automorphism of prime order of a fake projective plane X. In this paper we classify all possible structures of the quotient surface X/σ and its minimal ...
متن کاملCyclic affine planes and Paley difference sets
Arasu, K.T. and A. Pott, Cyclic affine planes and Paley difference sets, Discrete Mathematics 106/107 (1992) 19-23. The existence of a cyclic affine plane implies the existence of a Paley type difference set. We use the existence of this difference set to give the following condition on the existence of cyclic affine planes of order n: If n 8 mod 16 then n 1 must be a prime. We discuss the stru...
متن کاملOn the Genus of a Cyclic Plane Curve over a Finite Field
Cyclic curves, i.e. curves fixed by a cyclic collineation group, play a central role in the investigation of cyclic arcs in Desarguesian projective planes. In this paper, the genus of a cyclic curve arising from a cyclic k-arc of Singer type is computed.
متن کاملTransitive projective planes and insoluble groups
Suppose that a group G acts transitively on the points of P, a finite non-Desarguesian projective plane. We prove first that the Sylow 2subgroups of G are cyclic or generalized quaternion; we then prove that if G is insoluble then G/O(G) is isomorphic to SL2(5) or SL2(5).2. MSC(2000): 20B25, 51A35.
متن کاملFixed Point Results for Cyclic (α,β)-Admissible Type F-Contractions in Modular Spaces
In this paper, we prove the existence and uniqueness of fixed points for cyclic (α,β)-admissible type F-contraction and F−weak contraction under the setting of modular spaces, where the modular is convex and satisfying the ∆2-condition. Later, we prove some periodic point results for self-mappings on a modular space. We also give some examples to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 50 شماره
صفحات -
تاریخ انتشار 2009